Automatic Bridge Bidding Using Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Automatic Bridge Bidding Using Deep Reinforcement Learning
Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, w...
متن کاملDeep Reinforcement Learning for Sponsored Search Real-time Bidding
Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for adver...
متن کاملThe Case for Automatic Database Administration using Deep Reinforcement Learning
Like any large software system, a full-fledged DBMS offers an overwhelming amount of configuration knobs. These range from static initialisation parameters like buffer sizes, degree of concurrency, or level of replication to complex runtime decisions like creating a secondary index on a particular column or reorganising the physical layout of the store. To simplify the configuration, industry g...
متن کاملContract Bridge Bidding by Learning
Contract bridge is an example of an incomplete information game for which computers typically do not perform better than expert human bridge players. In particular, the typical bidding decisions of human bridge players are difficult to mimic with a computer program, and thus automatic bridge bidding remains to be a challenging research problem. Currently, the possibility of automatic bidding wi...
متن کاملIntegrating Reinforcement Learning, Bidding and Genetic Algorithms
This paper presents a GA-based multi-agent reinforcement learning bidding approach (GMARLB) for performing multi-agent reinforcement learning. GMARLB integrates reinforcement learning, bidding and genetic algorithms. The general idea of our multi-agent systems is as follows: There are a number of individual agents in a team, each agent of the team has two modules: Q module and CQ module. Each a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Games
سال: 2018
ISSN: 2475-1502,2475-1510
DOI: 10.1109/tg.2018.2866036